metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guang-Bo Che* and Bo Liu

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: guangbochejl@yahoo.com

Key indicators

Single-crystal X-ray study T = 292 K Mean σ (C–C) = 0.006 Å R factor = 0.045 wR factor = 0.106 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[pyrazino[2,3-f][1,10]phenan-throline]zinc(II)]- μ_4 -fumarato- μ_2 -fumarato]

In the title compound, $[Zn(C_4H_2O_4)(C_{14}H_8N_4)]_n$, the Zn^{II} atom is five-coordinate and exhibits a distorted trigonalbipyramidal coordination. The Zn^{II} atoms are further bridged by fumarate ligands, forming a two-dimensional network parallel to the *ab* plane.

Comment

The use of unsaturated organic acids such as fumarate as flexible spacers in the syntheses of coordination polymers has aroused enormous interest in recent years because of their versatile coordination modes and varieties of structural conformations (Zhu *et al.*, 2006). On the other hand, the 1,10-phenanthroline (phen) ligand has been widely used in the construction of metal-organic complexes (Chen & Liu, 2002), while an important derivative of phen, namely pyrazino[2,3-f][1,10]phenanthroline (Pyphen), was recently used to synthesize coordination polymers (Che *et al.*, 2006). We selected fumaric acid (H₂fum) as a linker and Pyphen as a secondary chelating ligand, generating a new Zn^{II} coordination polymer, [Zn(fum)(Pyphen)]_n, (I), which is reported here.

Selected bond lengths and angles for (I) are given in Table 1. In compound (I), each Zn^{II} atom is five-coordinate and exhibits a distorted trigonal-bipyramidal coordination (Fig. 1). Two carboxylate O atoms (O1 and O3) from two fum ligands and one N atom (N1) from the Pyphen ligand form the equatorial plane, while atoms N2 and O1(1 - x, 1 - y, 1 - z) of the Pyphen and fum ligands, respectively, occupy the axial positions.

© 2006 International Union of Crystallography All rights reserved

m2036 Che and Liu $\cdot [Zn(C_4H_2O_4)(C_{14}H_8N_4)]$

Received 22 July 2006

Accepted 30 July 2006

Figure 1

The asymmetric unit of (I), together with further atoms to complete the Zn^{II} coordination and the fumarate ligands. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -y, 1 - z; (iii) 2 - x, 2 - y, 1 - z.]

Figure 2

View of the layered structure of (I). H atoms have been omitted for clarity.

The Zn^{II} ions are bridged by fum ligands, generating a twodimensional network with (4,4)-grids parallel to the *ab* plane (Fig. 2). These layers are decorated with Pyphen ligands on both sides. Each corner of the (4,4)-grid is occupied by a binuclear Zn^{II} subunit. No π - π interactions involving the Pyphen ring system is observed, but the structure contains weak $C-H \cdots O$ interactions (Table 2).

Experimental

The Pyphen ligand was synthesized according to the literature method of Dickeson & Summers (1970). A methanolic solution (16 ml) of Pyphen (0.5 mmol) was added slowly to an aqueous solution (20 ml) of ZnCl₂·H₂O (0.5 mmol) and H₂fum (1 mmol) with stirring. The resulting solution was filtered and the filtrate was allowed to stand in air at room temperature for several days, yielding colourless crystals of (I) (28% yield based on Zn).

Crystal data

$[Zn(C_4H_2O_4)(C_{14}H_8N_4)]$	V = 797.8 (3) Å ³
$M_r = 411.67$	Z = 2
Triclinic, P1	$D_x = 1.714 \text{ Mg m}^{-3}$
a = 6.8613 (14) Å	Mo $K\alpha$ radiation
b = 8.3961 (17) Å	$\mu = 1.58 \text{ mm}^{-1}$
c = 14.610 (3) Å	T = 292 (2) K
$\alpha = 105.08 \ (3)^{\circ}$	Block, colourless
$\beta = 98.70 \ (3)^{\circ}$	$0.22 \times 0.19 \times 0.18$
$\gamma = 94.15 \ (3)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID

diffractometer ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.700, \ T_{\max} = 0.755$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2)]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 1.1513P]
$wR(F^2) = 0.106$	where $P = ($
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.0$
3472 reflections	$\Delta \rho_{\rm max} = 0.46 \ {\rm e}$
244 parameters	$\Delta \rho_{\min} = -0.48$
H-atom parameters constrained	

mm

7523 measured reflections 3472 independent reflections 2651 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$ $\theta_{\rm max} = 27.3^{\circ}$

$w = 1/[\sigma^2(F_o^2) + (0.0346P)^2]$
+ 1.1513P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1-O3	1.996 (3)	Zn1-N2	2.150 (3)
Zn1-O1	2.019 (2)	Zn1-O1 ⁱ	2.425 (3)
Zn1-N1	2.107 (3)		
O3-Zn1-O1	113.16 (11)	N1-Zn1-N2	79.02 (11)
O3-Zn1-N1	118.42 (12)	O3-Zn1-O1 ⁱ	84.24 (10)
O1-Zn1-N1	125.98 (11)	O1-Zn1-O1 ⁱ	77.65 (10)
O3-Zn1-N2	105.43 (12)	$N1-Zn1-O1^{i}$	92.25 (10)
O1-Zn1-N2	102.26 (11)	$N2-Zn1-O1^{i}$	169.21 (10)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C7−H7···O3 ⁱⁱ	0.93	2.41	3.337 (5)	174
C13−H13····O4 ⁱⁱⁱ	0.93	2.37	3.204 (6)	149
$C14 - H14 \cdots O2^{iv}$	0.93	2.52	3.344 (5)	148
Symmetry codes:	(ii) $-x + 2$, -	v + 1, -z + 1	(iii) $-x + 1$	v + 1, -z: (iv)

x + 1.

All H atoms were positioned geometrically and refined as riding atoms, with C–H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

metal-organic papers

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

The authors thank Jilin Normal University for supporting this work.

References

Che, G.-B., Xu, Z.-L. & Liu, C.-B. (2006). Acta Cryst. E62, m1370-m1372.

- Chen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811-4817.
- Dickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023-1027.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zhu, W.-H., Wang, Z.-M. & Gao, S. (2006). J. Chem. Soc. Dalton Trans. pp. 765–768.